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Abstract. The quantum dynamics, both non-equilibrium and equilibrium, of the dissipative two-level sys-
tem is studied by means of the perturbation approach based on a unitary transformation. It works well for
the whole parameter range 0 < α < 1 and 0 < ∆ < ωc and our main results are: the coherence-incoherence
transition is at αc = 1

2
[1 + ∆r/ωc]; for α < αc the non-equilibrium correlation P (t) = cos(ω0t) exp(−γt);

the susceptibility χ′′(ω)/ω is of a double peak structure for α < αc and the Shiba’s relation is exactly
satisfied; at the transition point α = αc the equilibrium correlation C(t) ≈ −1/γ2

c t2 in the long time limit.

PACS. 72.20.Dp General theory, scattering mechanisms – 05.30.-d Quantum statistical mechanics

Quantum dynamics in the two-level system coupled to
Ohmic bath (spin-boson model, SBM) is important to un-
derstand numerous physical and chemical processes since
it provides a universal model for these processes [1,2],
such as the defect-tunneling in solids and the macroscopic
quantum coherence experiment in SQUID’s. The Hamil-
tonian of SBM reads

H = −1
2
∆σx +

∑
k

ωkb†kbk +
1
2

∑
k

gk(b†k + bk)σz . (1)

The notations are the same as usual [1,2]. In this work
we consider the zero bias case with temperature T = 0.
The Ohmic bath is characterized by its spectral density:∑

k g2
kδ(ω−ωk) = 2αωθ(ωc−ω), where α is the dimension-

less coupling constant and θ(x) is the usual step function.
The Hamiltonian (1) seems quite simple. However, it

cannot be solved exactly and various approximate analyt-
ical and numerical methods have been used [1–13]. The
main theoretical interest is to understand how the en-
vironment influences the dynamics of the two-level sys-
tem and, in particular, how dissipation destroys quantum
coherence. Both the non-equilibrium and equilibrium dy-
namics are of interest for the different experimental re-
alizations of two-level systems. When the system can be
prepared in one of the two states by applying a bias for
times t < 0 and then let it evolve for t > 0 in zero bias,
the non-equilibrium correlation function P (t) is of primary
interest [1,6]. When the initial state preparation is not re-
alizable, the interest is then lies in the equilibrium corre-
lation function C(t) and the susceptibility χ(ω) [2–4,7–9].
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Moreover, the real and imaginary parts of χ(ω) should
satisfy the Shiba’s relation [3,7,9,12]. As far as we know,
there is no single analytical or numerical approach which
can produce correct behavior of P (t), C(t), and χ(ω) for
the whole parameter range 0 < α < 1 and 0 < ∆ < ωc.

In this work we present a new analytical approach,
based on the unitary transformation method and the
perturbation theory [14], for calculating both the non-
equilibrium and equilibrium dynamics of SBM. It works
well for the coupling constant 0 < α < 1 and the bare tun-
neling 0 < ∆ < ωc, and can reproduce nearly all results of
previous authors (they used various analytical and numer-
ical methods). The approach is quite simple and physically
clear, and may be easily extended to more complicated
coupling systems.

Silbey and Harris [13] proposed to make a unitary
transformation to H : H ′ = exp(S)H exp(−S),

S =
∑

k

gk

2ωk
ξk

(
b†k − bk

)
σz . (2)

The variational ground state energy is supposed to be:

Eg = 〈s1|〈{0k}|H ′|s1〉|{0k}〉, where |s1〉 = 1√
2

(
1
1

)
and

|s2〉 = 1√
2

(
1
−1

)
are eigenstates of σx and |{0k}〉 is the

vacuum state of bosons in which nk = 0 for every k. By
minimizing Eg, ξk is determined as

ξk = ωk/(ωk + η∆). (3)
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The authors calculated the renormalized tunnel-
ing ∆r [13],

η =
∆r

∆

=
(

e
∆

ωc

) α
1−α

exp
[
− α

1 − α

(
η∆

ωc + η∆
+ ln

ωc + η∆

ωc

)]
.

(4)

Although the variational method can predict correctly the
delocalized-localized transition point αl = 1 at the scal-
ing limit ∆/ωc � 1, it is not suitable for calculating the
dynamical properties of SBM.

A method of unitary transformation plus perturba-
tion calculation was used by Aslangul et al. [15] and by
Dekker [16] to treat the same problem. But their unitary
transformation is different from that in (2) (if ξk = 1
in transformation Eq. (2), then it is the same as theirs).
Their perturbation treatment is good only for the scal-
ing limit ∆/ωc � 1. Besides, Kehrein et al. [17] used the
continuous infinitesimal unitary transformations to diago-
nalize H (Eq. (1)) step by step and some static properties
of SBM were correctly predicted, such as the untraped-
traped transition at α = αl = 1 (when ∆/ωc � 1).
However, it seems difficult to calculate dynamical prop-
erties of SBM, especially the non-equilibrium correlation
P (t) [1,6], by the approach of Kehrein et al. They dealt
with a transition from coherent to incoherent tunneling at
some finite temperature T ∗

2 , but they did not treat the zero
temperature coherent-incoherent transition at α = αc.

Our approach starts from the unitary transforma-
tion (2) and then make perturbation calculation for the
transformed Hamiltonian. The transformation can be
done to the end and the result is H ′ = H ′

0 + H ′
1 + H ′

2,
where

H ′
0 = −1

2
η∆σx +

∑
k

ωkb†kbk −
∑

k

g2
k

4ωk
ξk(2 − ξk), (5)

η = exp

[
−
∑

k

g2
k

2ω2
k

ξ2
k

]
, (6)

H ′
1 =

1
2

∑
k

gk(1 − ξk)(b†k + bk)σz

− 1
2
η∆iσy

∑
k

gk

ωk
ξk(b†k − bk), (7)

H ′
2 = −1

2
∆σx

(
cosh

{∑
k

gk

ωk
ξk(b†k − bk)

}
− η

)

− 1
2
∆iσy

(
sinh

{∑
k

gk

ωk
ξk(b†k − bk)

}

− η
∑

k

gk

ωk
ξk(b†k − bk)

)
. (8)

Obviously, H ′
0 can be solved exactly because in which the

spin and bosons are decoupled. The eigenstate of H ′
0 is

a direct product, |s〉|{nk}〉, where |s〉 is |s1〉 or |s2〉 and

|{nk}〉 means that there are nk phonons for mode k. The
ground state of H ′

0 is

|g0〉 = |s1〉|{0k}〉. (9)

H ′
1 and H ′

2 are treated as perturbation and they should
be as small as possible. Equation (3), ξk = ωk/(ωk + η∆),
leads to

H ′
1 =

1
2
η∆
∑

k

gk

ωk
ξk

[
b†k(σz − iσy) + bk(σz + iσy)

]
(10)

and H ′
1|g0〉 = 0. Note that the form of ξk, equation (3),

in this work is determined by H ′
1|g0〉 = 0, instead of min-

imizing the ground state energy Eg. Thus, we get rid of
the variational condition.

The lowest excited states are |s2〉|{0k}〉 and |s1〉|1k〉,
where |1k〉 is the number state with nk = 1 but nk′ = 0
for all k′ �= k. It’s easily to check that 〈g0|H ′

2|g0〉 = 0 (be-
cause of the form of η in Eq. (6)), 〈{0k}|〈s2|H ′

2|g0〉 = 0,
〈1k|〈s1|H ′

2|g0〉 = 0, and 〈{0k}|〈s2|H ′
2|s1〉|1k〉 = 0. More-

over, since H ′
1|g0〉 = 0, we have 〈{0k}|〈s2|H ′

1|g0〉 = 0 and
〈1k|〈s1|H ′

1|g0〉 = 0. Thus, we can diagonalize the lowest
excited states of H ′ as

H ′ = −1
2
η∆|g0〉〈g0| +

∑
E

E|E〉〈E|

+ terms with higher excited states. (11)

The diagonalization is through the following transforma-
tion [4]:

|s2〉|{0k}〉 =
∑
E

x(E)|E〉, (12)

|s1〉|1k〉 =
∑
E

yk(E)|E〉, (13)

|E〉 = x(E)|s2〉|{0k}〉 +
∑

k

yk(E)|s1〉|1k〉, (14)

where

x(E) =

[
1 +

∑
k

V 2
k

(E + η∆/2 − ωk)2

]−1/2

, (15)

yk(E) =
Vk

E + η∆/2 − ωk
x(E), (16)

with Vk = η∆gkξk/ωk. E’s are the diagonalized excitation
energy and they are solutions of the equation

E − η∆

2
−
∑

k

V 2
k

E + η∆/2 − ωk
= 0. (17)

The non-equilibrium correlation P (t) =
〈b, +1|〈+1|eiHtσze

−iHt| + 1〉|b, +1〉 is defined in ref-
erence [1], where | + 1〉 is the eigenstate of σz = +1
and |b, +1〉 is the state of bosons adjusted to the state
of σz = +1. Because of the unitary transformation
(eSσze

−S = σz)

P (t) = 〈{0k}|〈+1|eiH′tσze
−iH′t| + 1〉|{0k}〉, (18)
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since eS| + 1〉|b, +1〉 = | + 1〉|{0k}〉. Using equations (11–
17) the result is

P (t) =
1
2

∑
E

x2(E) exp[−i(E + η∆/2)t]

+
1
2

∑
E

x2(E) exp[i(E + η∆/2)t]

=
1

4πi

∮
C

dE′e−iE′t

(
E′−η∆−

∑
k

V 2
k

E′+i0+−ωk

)−1

+
1

4πi

∮ ′

C

dE′eiE′t

(
E′−η∆−

∑
k

V 2
k

E′−i0+−ωk

)−1

,

(19)

where a change of the variable E′ = E + η∆/2 is made.
The real and imaginary parts of

∑
k V 2

k /(E′ ± i0+ − ωk)
are denoted as R(E′) and ∓γ(E′),

R(ω) = −2α
(η∆)2

ω + η∆

{
ωc

ωc + η∆

− ω

ω + η∆
ln
[ |ω|(ωc + η∆)

η∆(ωc − ω)

]}
, (20)

γ(ω) = 2απω(η∆)2/(ω + η∆)2. (21)

The integral in (19) can proceed by calculating the residue
of integrand and the result is P (t) = cos(ω0t) exp(−γt),
where ω0 is the solution of equation

ω − η∆ − R(ω) = 0 (22)

and γ = γ(η∆) = απη∆/2 (the second order approx-
imation). This P (t) is of the form of damped oscilla-
tion and one can check that the solution ω0 is real when
1 > 2αωc/(ωc + η∆). When 1 < 2αωc/(ωc + η∆), the so-
lution ω0 is imaginary and we have an incoherent P (t).
αc = 1

2 [1 + η∆/ωc] determines the critical point where
there is a coherent-incoherent transition. Note that when
∆/ωc � 1 and α = αc = 1/2, we have ω0 = 0 and
P (t) = exp(−γct) (γc = πe∆2/4ωc since η = e∆/ωc from
Eq. (4)), which is the same as was predicted by previ-
ous authors (γc = π∆2/2ωc in Refs. [3,4,6]). Figure 1
shows the calculated ω0/∆r as functions of α (α ≤ αc)
for ∆ = 0.01, 0.1, and 0.5. ∆r = η∆ is the renormalized
tunneling. The dotted line is γ/∆r = απ/2.

The coherent-incoherent transition point αc = 1
2 [1 +

η∆/ωc] increases with increasing ∆/ωc. Only at the scal-
ing limit ∆/ωc � 1 does αc take the value αc = 1

2 . This
result seems to be deviated from the equivalence between
SBM and the fermionic resonant level model (RLM), since
the latter predicts αc = 1

2 . We believe that the devia-
tion comes from the approximation introduced when the
bosonization technique is used to map SBM to RLM [4].
As was pointed out in reference [4], the equivalence be-
tween SBM and RLM is regolous only in the limit where
the momentum cutoff 1/a goes to infinity, which is equiv-
alent to ωc → ∞ in this work. This is to say that, away

Fig. 1. S(ω) as functions of ω for fixed α = 0.3 and ∆ = 0.01
(solid line), 0.1 (dashed), and 0.5 (dashed-dotted). The dotted
line is γ/∆r = απ/2.

from the scaling limit and when 0 < ∆ < ωc, the equiv-
alence between SBM and RLM is approximately and one
can expect some deviation of the properties of SBM from
those of RLM.

Since eSσze
−S = σz, the retarded Green’s function is

G(t) = −iθ(t) 〈[exp(iH ′t)σz exp(−iH ′t), σz ]〉′ , (23)

where 〈...〉′ means the average with thermodynamic prob-
ability exp(−βH ′). The Fourier transformation of G(t) is
denoted as G(ω), which satisfies an infinite chain of equa-
tion of motion [18]. We have made the cutoff approxima-
tion for the equation chain at the second order of gk and
the solution at T = 0 is

G(ω) =
1

ω − η∆ −∑k V 2
k /(ω − ωk)

− 1
ω + η∆ −∑k V 2

k /(ω + ωk)
. (24)

The susceptibility χ(ω) = −G(ω), and its imaginary
part is

χ′′(ω) =
γ(ω)θ(ω)

[ω − η∆ − R(ω)]2 + γ2(ω)

− γ(−ω)θ(−ω)
[ω + η∆ + R(−ω)]2 + γ2(−ω)

. (25)

The ω → 0 limit of S(ω) = χ′′(ω)/ω is

lim
ω→0

χ′′(ω)
ω

=
2απ

(η∆)2{1 − 2α[1 − η∆/(ωc + η∆)]}2
. (26)

Besides, the real part of the susceptibility is

χ′(ω = 0) =
2

η∆{1 − 2α[1 − η∆/(ωc + η∆)]} . (27)
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Fig. 2. ω0/∆r versus α relations for ∆/ωc = 0.01 (solid line,
αc = 0.50014), 0.1 (dashed, αc = 0.51212), and 0.5 (dashed-
dotted, αc = 0.66244).

Thus, the Shiba’s relation [3,7,9,12]

lim
ω→0

χ′′(ω)
ω

=
π

2
αχ′(ω = 0)2 (28)

is exactly satisfied. S(ω) has a double peak structure for
α < αc. For α ≥ αc there is only one peak at ω = 0.
Figure 2 shows the S(ω) versus ω relations for fixed α =
0.3 and ∆ = 0.01, 0.1, and 0.5.

The equilibrium correlation

C(t) =
1
2
Tr
{

exp(−βH)[σz(t)σz

+ σzσz(t)]
}
/Tr[exp(−βH)]

= − 1
2π

∫ ∞

−∞
dω coth

(
βω

2

)
ImG(ω) exp(−iωt)

=
1
π

∫ ∞

0

dω
γ(ω)

[ω − η∆ − R(ω0)]2 + γ2
cos(ωt), (29)

where ω0 is the solution of equation (22) and γ(ω) in the
denominator is approximated by the second order approx-
imation γ. For general value of α ≤ αc, C(t) may contain
both terms of the exponential decay ones and the alge-
braic decay ones. In the long-time limit the first non-zero
algebraic decay term dominates which is ∼−1/t2. For the
special point α = αc (ω0 = 0), the exponential decay
terms disappear. At the scaling limit ∆/ωc � 1 and the
coherence-incoherence transition point α = 1/2,

C(t) =
∫ ∞

0

dω
ω cos(ωt)
ω2 + γ2

c

(η∆)2

(ω + η∆)2
. (30)

C(t) decays algebraically in the long-time limit: C(t) ≈
−1/γ2

c t2, which is the same as what was predicted by pre-
vious authors [2,3,6].

In summary: the dynamics of SBM is studied by means
of the perturbation approach based on a unitary transfor-
mation. Analytical results of the non-equilibrium corre-
lation P (t), the susceptibility χ′′(ω) and the equilibrium
correlation C(t) are obtained for both the scaling limit
∆r/ωc � 1 and the general finite ∆r/ωc case. Our ap-
proach is quite simple, but it can reproduce nearly all
results which agree with those of previous authors using
various complicated methods. Besides, our approach can
be easily extended to other more complicated coupling
systems.
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